-
01. Real Numbers
9-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
Lecture1.5
-
Lecture1.6
-
Lecture1.7
-
Lecture1.8
-
Lecture1.9
-
-
02. Polynomials
11-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
Lecture2.6
-
Lecture2.7
-
Lecture2.8
-
Lecture2.9
-
Lecture2.10
-
Lecture2.11
-
-
03. Linear Equation
9-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
Lecture3.5
-
Lecture3.6
-
Lecture3.7
-
Lecture3.8
-
Lecture3.9
-
-
04. Quadratic Equation
8-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
Lecture4.8
-
-
05. Arithmetic Progressions
11-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
Lecture5.4
-
Lecture5.5
-
Lecture5.6
-
Lecture5.7
-
Lecture5.8
-
Lecture5.9
-
Lecture5.10
-
Lecture5.11
-
-
06. Some Applications of Trigonometry
7-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
Lecture6.4
-
Lecture6.5
-
Lecture6.6
-
Lecture6.7
-
-
07. Coordinate Geometry
17-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
Lecture7.4
-
Lecture7.5
-
Lecture7.6
-
Lecture7.7
-
Lecture7.8
-
Lecture7.9
-
Lecture7.10
-
Lecture7.11
-
Lecture7.12
-
Lecture7.13
-
Lecture7.14
-
Lecture7.15
-
Lecture7.16
-
Lecture7.17
-
-
08. Triangles
15-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
Lecture8.7
-
Lecture8.8
-
Lecture8.9
-
Lecture8.10
-
Lecture8.11
-
Lecture8.12
-
Lecture8.13
-
Lecture8.14
-
Lecture8.15
-
-
09. Circles
8-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
Lecture9.4
-
Lecture9.5
-
Lecture9.6
-
Lecture9.7
-
Lecture9.8
-
-
10. Areas Related to Circles
10-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
Lecture10.6
-
Lecture10.7
-
Lecture10.8
-
Lecture10.9
-
Lecture10.10
-
-
11. Introduction to Trigonometry
7-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
Lecture11.5
-
Lecture11.6
-
Lecture11.7
-
-
12. Surface Areas and Volumes
9-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Lecture12.4
-
Lecture12.5
-
Lecture12.6
-
Lecture12.7
-
Lecture12.8
-
Lecture12.9
-
-
13. Statistics
12-
Lecture13.1
-
Lecture13.2
-
Lecture13.3
-
Lecture13.4
-
Lecture13.5
-
Lecture13.6
-
Lecture13.7
-
Lecture13.8
-
Lecture13.9
-
Lecture13.10
-
Lecture13.11
-
Lecture13.12
-
-
14. Probability
9-
Lecture14.1
-
Lecture14.2
-
Lecture14.3
-
Lecture14.4
-
Lecture14.5
-
Lecture14.6
-
Lecture14.7
-
Lecture14.8
-
Lecture14.9
-
-
15. Construction
7-
Lecture15.1
-
Lecture15.2
-
Lecture15.3
-
Lecture15.4
-
Lecture15.5
-
Lecture15.6
-
Lecture15.7
-
Chapter Notes – Polynomials
(1) Polynomial : The expression which contains one or more terms with non-zero coefficient is called a polynomial. A polynomial can have any number of terms.
For Example: 10, a + b, 7x + y + 5, w + x + y + z, etc. are some polynomials.
(2) Degree of polynomial : The highest power of the variable in a polynomial is called as the degree of the polynomial.
For Example: The degree of p(x) = x5 – x3 + 7 is 5.
(3) Linear polynomial : A polynomial of degree one is called a linear polynomial.
For Example: 1/(2x – 7), √s + 5, etc. are some linear polynomial.
(4) Quadratic polynomial : A polynomial having highest degree of two is called a quadratic polynomial. The term ‘quadratic’ is derived from word ‘quadrate’ which means square. In general, a quadratic polynomial can be expressed in the form ax2 + bx + c, where a≠0 and a, b, c are constants.
For Example: x2 – 9, a2 + a + 7, etc. are some quadratic polynomials.
(5) Cubic Polynomial : A polynomial having highest degree of three is called a cubic polynomial. In general, a quadratic polynomial can be expressed in the form ax3 + bx2 + cx + d, where a≠0 and a, b, c, d are constants.
For Example: x3 – 9x +2, a3 + a2 + √a + 7, etc. are some cubic polynomial.
(6) Zeroes of a Polynomial : The value of variable for which the polynomial becomes zero is called as the zeroes of the polynomial. In general, if k is a zero of p(x) = ax + b, then p(k) = ak + b = 0, i.e., k = -b/a. Hence, the zero of the linear polynomial ax + b is –b/a = -(Constant term)/(coefficient of x)
For Example: Consider p(x) = x + 2. Find zeroes of this polynomial.
If we put x = -2 in p(x), we get,
p(-2) = -2 + 2 = 0.
Thus, -2 is a zero of the polynomial p(x).
(7) Geometrical Meaning of the Zeroes of a Polynomial:
(i) For Linear Polynomial:
In general, for a linear polynomial ax + b, a ≠ 0, the graph of y = ax + b is a straight line which intersects the x-axis at exactly one point, namely, (-b/a , 0) . Therefore, the linear polynomial ax + b, a ≠ 0, has exactly one zero, namely, the x-coordinate of the point where the graph of y = ax + b intersects the x-axis.
For Example: The graph of y = 2x – 3 is a straight line passing through points (0, -3) and (3/2, 0).
x | 0 | 3/2 |
y = 2x – 3 | 6 | 0 |
Here, the graph of y = 2x – 3 is a straight line which intersects the x-axis at exactly one point, namely, (3/2 , 0).
(ii) For Quadratic Polynomial:
In general, for any quadratic polynomial ax2 + bx + c, a ≠ 0, the graph of the corresponding equation y = ax2 + bx + c has one of the two shapes either open upwards like curve or open downwards like curve depending on whether a > 0 or a < 0. (These curves are called parabolas.)
Case 1: The Graph cuts x-axis at two distinct points.The x-coordinates of the quadratic polynomial ax2 + bx + c have two zeros in this case.
Case 2: The Graph cuts x-axis at exactly one point.The x-coordinates of the quadratic polynomial ax2 + bx + c have only one zero in this case.
Case 3: The Graph is completely above x-axis or below x-axis.The quadratic polynomial ax2 + bx + c have no zero in this case.
For Example: For the given graph, find the number of zeroes of p(x).From the figure, we can see that the graph intersects the x-axis at four points.
Therefore, the number of zeroes is 4.
(8) Relationship between Zeroes and Coefficients of a Polynomial:
(i) Quadratic Polynomial:
In general, if α and β are the zeroes of the quadratic polynomial p(x) = ax2 + bx + c, a ≠ 0, then we know that (x – α) and (x – β) are the factors of p(x).
Moreover, α + β = -b/a and α β = c/a.
In general, sum of zeros = -(Coefficient of x)/(Coefficient of x2).
Product of zeros = (Constant term)/ (Coefficient of x2).
For Example: Find the zeroes of the quadratic polynomial x2 + 7x + 10, and verify the relationship between the zeroes and the coefficients.
On finding the factors of x2 + 7x + 10, we get, x2+ 7x + 10 = (x + 2) (x + 5)
Thus, value of x2 + 7x + 10 is zero for (x+2) = 0 or (x +5)= 0. Or in other words, for x = -2 or x = -5.
Hence, zeros of x2 + 7x + 10 are -2 and -5.
Now, sum of zeros = -2 + (-5) = -7 = -7/1 = -(Coefficient of x)/(Coefficient of x2). Similarly, product of zeros = (-2) x (-5) = 10 = 10/1 = (Constant term)/ (Coefficient of x2).
For Example: Find the zeroes of the quadratic polynomial t2 -15, and verify the relationship between the zeroes and the coefficients.
On finding the factors of t2 -15, we get, t2 -15= (t + √15) (t – √15)
Thus, value of t2 -15 is zero for (t +√15) = 0 or (t – √15) = 0. Or in other words, for t = √15 or t = -√15.
Hence, zeros of t2 -15 are √15 and -√15.
Now, sum of zeros = √15 + (-√15) = 0 = -0/1 = -(Coefficient of t)/(Coefficient of t2). Similarly, product of zeros = (√15) x (-√15) = -15 = -15/1 = (Constant term)/ (Coefficient of t2).
For Example: Find a quadratic polynomial for the given numbers as the sum and product of its zeroes respectively 4, 1.
Let the quadratic polynomial be ax2 + bx + c.
Given, α + β = 4 = 4/1 = -b/a.
α β = 1 = 1/1 = c/a.
Thus, a = 1, b = -4 and c = 1.
Therefore, the quadratic polynomial is x2 – 4x + 1.
(ii) Cubic Polynomial: In general, it can be proved that if α, β, γ are the zeroes of the cubic polynomial ax3 + bx2 + cx + d, then,
α + β + γ = –b/a ,
αβ + βγ + γα = c/a and α β γ = – d/a .
(9) Division Algorithm for Polynomials : If p(x) and g(x) are any two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that p(x) = g(x) × q(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).
For Example: Divide 3x2 – x3 – 3x + 5 by x – 1 – x2, and verify the division algorithm.
On dividing 3x2 – x3 – 3x + 5 by x – 1 – x2, we get,
Here, quotient is (x – 2) and remainder is 3.
Now, as per the division algorithm, Divisor x Quotient + Remainder = Dividend
LHS = (-x2 + x + 1)(x – 2) + 3
= (–x3 + x2 – x + 2x2 – 2x + 2 + 3)
= (–x3 + 3x2 – 3x + 5)
RHS = (–x3 + 3x2 – 3x + 5)
Thus, division algorithm is verified.
For Example: On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were (x – 2) and (–2x + 4), respectively. Find g(x).
Given, dividend = p(x) = (x3 – 3x2 + x + 2), quotient = (x -2), remainder = (-2x + 4).
Let divisor be denoted by g(x).
Now, as per the division algorithm,
Divisor x Quotient + Remainder = Dividend
(x3 – 3x2 + x + 2) = g(x) (x – 2) + (-2x + 4)
(x3 – 3x2 + x + 2 + 2x -4) = g(x) (x – 2)
(x3 – 3x2 + 3x – 2) = g(x) (x – 2)
Hence, g(x) is the quotient when we divide (x3 – 3x2 + 3x – 2) by (x – 2).Therefore, g(x) = (x2 – x + 1).
6 Comments
How we access live tutorial classes please tell me
For any information regarding live class please call us at 8287971571
I am not able to access any test of coordinate geometry, can you pls resolve the issue?
We have fixed the issue. Please feel free to call us at 8287971571 if you face such type of issues.
Hi!
I am a student in class 10th and ive noticed that you dont give full courses on your youtube channel. I mean, its understandable. But we request you to at least put full course of only one chapter on youtube so that we can refer to that. Only one from the book Because your videos are very good and they enrich our learning.
Please give this feedback a chance and consider our request.
Dronstudy lover,
Ananyaa
Great article, the information provided to us. Thank you